3.29 \(\int (a+a \sin (e+f x))^2 (A+B \sin (e+f x)) (c-c \sin (e+f x))^2 \, dx\)

Optimal. Leaf size=89 \[ \frac{a^2 A c^2 \sin (e+f x) \cos ^3(e+f x)}{4 f}+\frac{3 a^2 A c^2 \sin (e+f x) \cos (e+f x)}{8 f}+\frac{3}{8} a^2 A c^2 x-\frac{a^2 B c^2 \cos ^5(e+f x)}{5 f} \]

[Out]

(3*a^2*A*c^2*x)/8 - (a^2*B*c^2*Cos[e + f*x]^5)/(5*f) + (3*a^2*A*c^2*Cos[e + f*x]*Sin[e + f*x])/(8*f) + (a^2*A*
c^2*Cos[e + f*x]^3*Sin[e + f*x])/(4*f)

________________________________________________________________________________________

Rubi [A]  time = 0.136876, antiderivative size = 89, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {2967, 2669, 2635, 8} \[ \frac{a^2 A c^2 \sin (e+f x) \cos ^3(e+f x)}{4 f}+\frac{3 a^2 A c^2 \sin (e+f x) \cos (e+f x)}{8 f}+\frac{3}{8} a^2 A c^2 x-\frac{a^2 B c^2 \cos ^5(e+f x)}{5 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^2*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^2,x]

[Out]

(3*a^2*A*c^2*x)/8 - (a^2*B*c^2*Cos[e + f*x]^5)/(5*f) + (3*a^2*A*c^2*Cos[e + f*x]*Sin[e + f*x])/(8*f) + (a^2*A*
c^2*Cos[e + f*x]^3*Sin[e + f*x])/(4*f)

Rule 2967

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int (a+a \sin (e+f x))^2 (A+B \sin (e+f x)) (c-c \sin (e+f x))^2 \, dx &=\left (a^2 c^2\right ) \int \cos ^4(e+f x) (A+B \sin (e+f x)) \, dx\\ &=-\frac{a^2 B c^2 \cos ^5(e+f x)}{5 f}+\left (a^2 A c^2\right ) \int \cos ^4(e+f x) \, dx\\ &=-\frac{a^2 B c^2 \cos ^5(e+f x)}{5 f}+\frac{a^2 A c^2 \cos ^3(e+f x) \sin (e+f x)}{4 f}+\frac{1}{4} \left (3 a^2 A c^2\right ) \int \cos ^2(e+f x) \, dx\\ &=-\frac{a^2 B c^2 \cos ^5(e+f x)}{5 f}+\frac{3 a^2 A c^2 \cos (e+f x) \sin (e+f x)}{8 f}+\frac{a^2 A c^2 \cos ^3(e+f x) \sin (e+f x)}{4 f}+\frac{1}{8} \left (3 a^2 A c^2\right ) \int 1 \, dx\\ &=\frac{3}{8} a^2 A c^2 x-\frac{a^2 B c^2 \cos ^5(e+f x)}{5 f}+\frac{3 a^2 A c^2 \cos (e+f x) \sin (e+f x)}{8 f}+\frac{a^2 A c^2 \cos ^3(e+f x) \sin (e+f x)}{4 f}\\ \end{align*}

Mathematica [A]  time = 0.143001, size = 54, normalized size = 0.61 \[ \frac{a^2 c^2 \left (5 A (12 (e+f x)+8 \sin (2 (e+f x))+\sin (4 (e+f x)))-32 B \cos ^5(e+f x)\right )}{160 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^2*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^2,x]

[Out]

(a^2*c^2*(-32*B*Cos[e + f*x]^5 + 5*A*(12*(e + f*x) + 8*Sin[2*(e + f*x)] + Sin[4*(e + f*x)])))/(160*f)

________________________________________________________________________________________

Maple [B]  time = 0.026, size = 166, normalized size = 1.9 \begin{align*}{\frac{1}{f} \left ( -{\frac{B{a}^{2}{c}^{2}\cos \left ( fx+e \right ) }{5} \left ({\frac{8}{3}}+ \left ( \sin \left ( fx+e \right ) \right ) ^{4}+{\frac{4\, \left ( \sin \left ( fx+e \right ) \right ) ^{2}}{3}} \right ) }+A{a}^{2}{c}^{2} \left ( -{\frac{\cos \left ( fx+e \right ) }{4} \left ( \left ( \sin \left ( fx+e \right ) \right ) ^{3}+{\frac{3\,\sin \left ( fx+e \right ) }{2}} \right ) }+{\frac{3\,fx}{8}}+{\frac{3\,e}{8}} \right ) +{\frac{2\,B{a}^{2}{c}^{2} \left ( 2+ \left ( \sin \left ( fx+e \right ) \right ) ^{2} \right ) \cos \left ( fx+e \right ) }{3}}-2\,A{a}^{2}{c}^{2} \left ( -1/2\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) +1/2\,fx+e/2 \right ) -B{a}^{2}{c}^{2}\cos \left ( fx+e \right ) +A{a}^{2}{c}^{2} \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2,x)

[Out]

1/f*(-1/5*B*a^2*c^2*(8/3+sin(f*x+e)^4+4/3*sin(f*x+e)^2)*cos(f*x+e)+A*a^2*c^2*(-1/4*(sin(f*x+e)^3+3/2*sin(f*x+e
))*cos(f*x+e)+3/8*f*x+3/8*e)+2/3*B*a^2*c^2*(2+sin(f*x+e)^2)*cos(f*x+e)-2*A*a^2*c^2*(-1/2*sin(f*x+e)*cos(f*x+e)
+1/2*f*x+1/2*e)-B*a^2*c^2*cos(f*x+e)+A*a^2*c^2*(f*x+e))

________________________________________________________________________________________

Maxima [B]  time = 0.96787, size = 221, normalized size = 2.48 \begin{align*} \frac{15 \,{\left (12 \, f x + 12 \, e + \sin \left (4 \, f x + 4 \, e\right ) - 8 \, \sin \left (2 \, f x + 2 \, e\right )\right )} A a^{2} c^{2} - 240 \,{\left (2 \, f x + 2 \, e - \sin \left (2 \, f x + 2 \, e\right )\right )} A a^{2} c^{2} + 480 \,{\left (f x + e\right )} A a^{2} c^{2} - 32 \,{\left (3 \, \cos \left (f x + e\right )^{5} - 10 \, \cos \left (f x + e\right )^{3} + 15 \, \cos \left (f x + e\right )\right )} B a^{2} c^{2} - 320 \,{\left (\cos \left (f x + e\right )^{3} - 3 \, \cos \left (f x + e\right )\right )} B a^{2} c^{2} - 480 \, B a^{2} c^{2} \cos \left (f x + e\right )}{480 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

1/480*(15*(12*f*x + 12*e + sin(4*f*x + 4*e) - 8*sin(2*f*x + 2*e))*A*a^2*c^2 - 240*(2*f*x + 2*e - sin(2*f*x + 2
*e))*A*a^2*c^2 + 480*(f*x + e)*A*a^2*c^2 - 32*(3*cos(f*x + e)^5 - 10*cos(f*x + e)^3 + 15*cos(f*x + e))*B*a^2*c
^2 - 320*(cos(f*x + e)^3 - 3*cos(f*x + e))*B*a^2*c^2 - 480*B*a^2*c^2*cos(f*x + e))/f

________________________________________________________________________________________

Fricas [A]  time = 1.46277, size = 176, normalized size = 1.98 \begin{align*} -\frac{8 \, B a^{2} c^{2} \cos \left (f x + e\right )^{5} - 15 \, A a^{2} c^{2} f x - 5 \,{\left (2 \, A a^{2} c^{2} \cos \left (f x + e\right )^{3} + 3 \, A a^{2} c^{2} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{40 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

-1/40*(8*B*a^2*c^2*cos(f*x + e)^5 - 15*A*a^2*c^2*f*x - 5*(2*A*a^2*c^2*cos(f*x + e)^3 + 3*A*a^2*c^2*cos(f*x + e
))*sin(f*x + e))/f

________________________________________________________________________________________

Sympy [A]  time = 4.94064, size = 372, normalized size = 4.18 \begin{align*} \begin{cases} \frac{3 A a^{2} c^{2} x \sin ^{4}{\left (e + f x \right )}}{8} + \frac{3 A a^{2} c^{2} x \sin ^{2}{\left (e + f x \right )} \cos ^{2}{\left (e + f x \right )}}{4} - A a^{2} c^{2} x \sin ^{2}{\left (e + f x \right )} + \frac{3 A a^{2} c^{2} x \cos ^{4}{\left (e + f x \right )}}{8} - A a^{2} c^{2} x \cos ^{2}{\left (e + f x \right )} + A a^{2} c^{2} x - \frac{5 A a^{2} c^{2} \sin ^{3}{\left (e + f x \right )} \cos{\left (e + f x \right )}}{8 f} - \frac{3 A a^{2} c^{2} \sin{\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{8 f} + \frac{A a^{2} c^{2} \sin{\left (e + f x \right )} \cos{\left (e + f x \right )}}{f} - \frac{B a^{2} c^{2} \sin ^{4}{\left (e + f x \right )} \cos{\left (e + f x \right )}}{f} - \frac{4 B a^{2} c^{2} \sin ^{2}{\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{3 f} + \frac{2 B a^{2} c^{2} \sin ^{2}{\left (e + f x \right )} \cos{\left (e + f x \right )}}{f} - \frac{8 B a^{2} c^{2} \cos ^{5}{\left (e + f x \right )}}{15 f} + \frac{4 B a^{2} c^{2} \cos ^{3}{\left (e + f x \right )}}{3 f} - \frac{B a^{2} c^{2} \cos{\left (e + f x \right )}}{f} & \text{for}\: f \neq 0 \\x \left (A + B \sin{\left (e \right )}\right ) \left (a \sin{\left (e \right )} + a\right )^{2} \left (- c \sin{\left (e \right )} + c\right )^{2} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**2*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))**2,x)

[Out]

Piecewise((3*A*a**2*c**2*x*sin(e + f*x)**4/8 + 3*A*a**2*c**2*x*sin(e + f*x)**2*cos(e + f*x)**2/4 - A*a**2*c**2
*x*sin(e + f*x)**2 + 3*A*a**2*c**2*x*cos(e + f*x)**4/8 - A*a**2*c**2*x*cos(e + f*x)**2 + A*a**2*c**2*x - 5*A*a
**2*c**2*sin(e + f*x)**3*cos(e + f*x)/(8*f) - 3*A*a**2*c**2*sin(e + f*x)*cos(e + f*x)**3/(8*f) + A*a**2*c**2*s
in(e + f*x)*cos(e + f*x)/f - B*a**2*c**2*sin(e + f*x)**4*cos(e + f*x)/f - 4*B*a**2*c**2*sin(e + f*x)**2*cos(e
+ f*x)**3/(3*f) + 2*B*a**2*c**2*sin(e + f*x)**2*cos(e + f*x)/f - 8*B*a**2*c**2*cos(e + f*x)**5/(15*f) + 4*B*a*
*2*c**2*cos(e + f*x)**3/(3*f) - B*a**2*c**2*cos(e + f*x)/f, Ne(f, 0)), (x*(A + B*sin(e))*(a*sin(e) + a)**2*(-c
*sin(e) + c)**2, True))

________________________________________________________________________________________

Giac [A]  time = 1.21036, size = 159, normalized size = 1.79 \begin{align*} \frac{3}{8} \, A a^{2} c^{2} x - \frac{B a^{2} c^{2} \cos \left (5 \, f x + 5 \, e\right )}{80 \, f} - \frac{B a^{2} c^{2} \cos \left (3 \, f x + 3 \, e\right )}{16 \, f} - \frac{B a^{2} c^{2} \cos \left (f x + e\right )}{8 \, f} + \frac{A a^{2} c^{2} \sin \left (4 \, f x + 4 \, e\right )}{32 \, f} + \frac{A a^{2} c^{2} \sin \left (2 \, f x + 2 \, e\right )}{4 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^2*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2,x, algorithm="giac")

[Out]

3/8*A*a^2*c^2*x - 1/80*B*a^2*c^2*cos(5*f*x + 5*e)/f - 1/16*B*a^2*c^2*cos(3*f*x + 3*e)/f - 1/8*B*a^2*c^2*cos(f*
x + e)/f + 1/32*A*a^2*c^2*sin(4*f*x + 4*e)/f + 1/4*A*a^2*c^2*sin(2*f*x + 2*e)/f